Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
EVEX.128.66.0F3A.W0 26 /r ib VGETMANTPS xmm1 {k1}{z}, xmm2/m128/m32bcst, imm8 | A | V/V | AVX512VL AVX512F | Get normalized mantissa from float32 vector xmm2/m128/m32bcst and store the result in xmm1, using imm8 for sign control and mantissa interval normalization, under writemask. |
EVEX.256.66.0F3A.W0 26 /r ib VGETMANTPS ymm1 {k1}{z}, ymm2/m256/m32bcst, imm8 | A | V/V | AVX512VL AVX512F | Get normalized mantissa from float32 vector ymm2/m256/m32bcst and store the result in ymm1, using imm8 for sign control and mantissa interval normalization, under writemask. |
EVEX.512.66.0F3A.W0 26 /r ib VGETMANTPS zmm1 {k1}{z}, zmm2/m512/m32bcst{sae}, imm8 | A | V/V | AVX512F | Get normalized mantissa from float32 vector zmm2/m512/m32bcst and store the result in zmm1, using imm8 for sign control and mantissa interval normalization, under writemask. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | Full | ModRM:reg (w) | ModRM:r/m (r) | imm8 | N/A |
Description
Convert single-precision floating values in the source operand (the second operand) to single-precision floating-point values with the mantissa normalization and sign control specified by the imm8 byte, see Figure 5-15. The converted results are written to the destination operand (the first operand) using writemask k1. The normalized mantissa is specified by interv (imm8[1:0]) and the sign control (sc) is specified by bits 3:2 of the immediate byte.
The destination operand is a ZMM/YMM/XMM register updated under the writemask. The source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-bit memory location.
For each input single-precision floating-point value x, The conversion operation is:
GetMant(x) = ±2k|x.significand|
where:
1 <= |x.significand| < 2
Unbiased exponent k can be either 0 or -1, depending on the interval range defined by interv, the range of the significand and whether the exponent of the source is even or odd. The sign of the final result is determined by sc and the source sign. The encoded value of imm8[1:0] and sign control are shown in Figure 5-15.
Each converted single-precision floating-point result is encoded according to the sign control, the unbiased expo-nent k (adding bias) and a mantissa normalized to the range specified by interv.
The GetMant() function follows Table 5-8 when dealing with floating-point special numbers.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1 are computed and stored into the destination. Elements in zmm1 with the corresponding bit clear in k1 retain their previous values.
Note: EVEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise instructions will #UD.
Operation
def getmant_fp32(src, sign_control, normalization_interval):
bias := 127
dst.sign := sign_control[0] ? 0 : src.sign
signed_one := sign_control[0] ? +1.0 : -1.0
dst.exp := src.exp
dst.fraction := src.fraction
zero := (dst.exp = 0) and ((dst.fraction = 0) or (MXCSR.DAZ=1))
denormal := (dst.exp = 0) and (dst.fraction != 0) and (MXCSR.DAZ=0)
infinity := (dst.exp = 0xFF) and (dst.fraction = 0)
nan := (dst.exp = 0xFF) and (dst.fraction != 0)
src_signaling := src.fraction[22]
snan := nan and (src_signaling = 0)
positive := (src.sign = 0)
negative := (src.sign = 1)
if nan:
if snan:
MXCSR.IE := 1
return qnan(src)
if positive and (zero or infinity):
return 1.0
if negative:
if zero:
return signed_one
if infinity:
if sign_control[1]:
MXCSR.IE := 1
return QNaN_Indefinite
return signed_one
if sign_control[1]:
MXCSR.IE := 1
return QNaN_Indefinite
if denormal:
jbit := 0
dst.exp := bias
while jbit = 0:
jbit := dst.fraction[22]
dst.fraction := dst.fraction << 1
dst.exp : = dst.exp - 1
MXCSR.DE := 1
unbiased_exp := dst.exp - bias
odd_exp := unbiased_exp[0]
signaling_bit := dst.fraction[22]
if normalization_interval = 0b00:
dst.exp := bias
else if normalization_interval = 0b01:
dst.exp := odd_exp ? bias-1 : bias
else if normalization_interval = 0b10:
dst.exp := bias-1
else if normalization_interval = 0b11:
dst.exp := signaling_bit ? bias-1 : bias
return dst
VGETMANTPS (EVEX encoded versions)
VGETMANTPS dest{k1}, src, imm8
VL = 128, 256, or 512
KL := VL / 32
sign_control := imm8[3:2]
normalization_interval := imm8[1:0]
FOR i := 0 to KL-1:
IF k1[i] or *no writemask*:
IF SRC is memory and (EVEX.b = 1):
tsrc := src.float[0]
ELSE:
tsrc := src.float[i]
DEST.float[i] := getmant_fp32(tsrc, sign_control, normalization_interval)
ELSE IF *zeroing*:
DEST.float[i] := 0
//else DEST.float[i] remains unchanged
DEST[MAX_VL-1:VL] := 0
Intel C/C++ Compiler Intrinsic Equivalent
VGETMANTPS __m512 _mm512_getmant_ps( __m512 a, enum intv, enum sgn);
VGETMANTPS __m512 _mm512_mask_getmant_ps(__m512 s, __mmask16 k, __m512 a, enum intv, enum sgn;
VGETMANTPS __m512 _mm512_maskz_getmant_ps(__mmask16 k, __m512 a, enum intv, enum sgn);
VGETMANTPS __m512 _mm512_getmant_round_ps( __m512 a, enum intv, enum sgn, int r);
VGETMANTPS __m512 _mm512_mask_getmant_round_ps(__m512 s, __mmask16 k, __m512 a, enum intv, enum sgn, int r);
VGETMANTPS __m512 _mm512_maskz_getmant_round_ps(__mmask16 k, __m512 a, enum intv, enum sgn, int r);
VGETMANTPS __m256 _mm256_getmant_ps( __m256 a, enum intv, enum sgn);
VGETMANTPS __m256 _mm256_mask_getmant_ps(__m256 s, __mmask8 k, __m256 a, enum intv, enum sgn);
VGETMANTPS __m256 _mm256_maskz_getmant_ps( __mmask8 k, __m256 a, enum intv, enum sgn);
VGETMANTPS __m128 _mm_getmant_ps( __m128 a, enum intv, enum sgn);
VGETMANTPS __m128 _mm_mask_getmant_ps(__m128 s, __mmask8 k, __m128 a, enum intv, enum sgn);
VGETMANTPS __m128 _mm_maskz_getmant_ps( __mmask8 k, __m128 a, enum intv, enum sgn);
SIMD Floating-Point Exceptions
Denormal, Invalid.
Other Exceptions
See Table 2-46, “Type E2 Class Exception Conditions.”
Additionally:
#UD | If EVEX.vvvv != 1111B. |